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Abstract 

We discuss the differential algebras used in Connes' approach to Yang-Mills theories with 
spontaneous symmetry breaking. These differential algebras generated by algebras of the form 
functions ® matrix are shown to be skew tensor products of differential forms with a specific 
matrix algebra. For that we derive a general formula for differential algebras based on tensor 
products of algebras. The result is used to characterize differential algebras which appear in 
models with one symmetry breaking scale. 
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1. Introduction 

In spite of  the great experimental success of  the Standard Model of  the electroweak 

interaction there is a general feeling that the theoretical understanding of  this interaction 

is far from being complete. Not only are the regularities, like the appearance of  the 

elementary particles in families, and the irregularities, like the mass-matrix, a complete 

mystery. Also the concept of  spontaneous symmetry breaking seems to be arbitrarily 

introduced by hand in order to turn Yang-Mills theories into experimentally relevant 

models. 
However, there are recent new and promising attempts to solve at least the problem 

related to the Higgs-mechanism and spontaneous symmetry breaking. They are more or 

less based on or inspired by Connes '  non-commutative geometry [ 1 ]. There is one line 
of  approach initiated by Connes himself [2] ,  which later on was generalized to a Grand 

Unification Model [ 3,4]. 
There is another line of  approach followed in [5,6]. It is based on superconnections 

in the sense of  Matthai and Quillen [ 12]. The key-idea in these models is to extend the 
usual exterior differential by a matrix derivation. The physical motivation for this was 
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given in [7]. The connection is then taken to be an element of a graded Lie-algebra 

SU(mln)  which has been extended to a module over differential forms. This line of 
approach seems to be related to the one of Connes. However, until now it was not 
known to what extent they are similar and what the precise differences are. A precise 

comparison between the models [2,8] and [5-7] became possible only after the present 
construction. The results of this comparison appeared in [ 10]. 

In this article we want to investigate Connes' approach to Yang-Mills theory with 
spontaneous symmetry breaking. More precisely, we will discuss the differential algebra 
12o`4 in Connes construction, which is a noncommutative generalisation of differential 

forms. It is not a unique generalisation, as other noncommutative algebras have been 
proposed and at the time being it is not clear which one is the 'best'  object. However, 

/2D.4 is definitely an interesting object if the underlying manifold is an even dimen- 
sional compact spin manifold with euclidean signature. This algebra is a derived object, 
obtained from an associative algebra .4 via the universal differential enveloping algebra 

and a k-cycle. Therefore /20.4 is not known in general and has to be computed for 
each specific example. We shall give a quite detailed characterization of this object for 
general situations. The fact that all physical quantities like connections or curvatures are 

objects in the differential algebra/2o.4 underlines its importance. Lower degrees of the 
algebra were calculated by D. Kastler and D. Testard in [9] and by A. Connes in [ 1]. 

We show that this algebra is in fact a skew tensor product of a specific differential 
matrix algebra with differential forms, i.e. matrix valued differential forms. 

In the case of Yang-Mills theories with spontaneous symmetry breaking the algebra 

.4 is given as a tensor product of .T', the algebra of smooth functions, and .4A4, a matrix 

algebra. The differential algebra /'2D.T" for the algebra of functions is the usual de Rham 

algebra [ 1 ]. ,Oo.4• for the matrix algebra will be easy to compute, as we shall see 
in Section 3. Therefore we want to make use of this fact and derive in Section 5 a 

general formula which relates /2D(.41 ® .42) of a product algebra to the differential 
algebras /2D.41 and /2D`42 of the factor algebras. In our case, where the tensor product 
of  an algebra of functions and a matrix algebra is taken, the general relation becomes 

much simpler as we will see in Section 6. This article ends with conclusions drawn in 
Section 8. However, we shall first give a brief introduction to the general subject in the 
next section. 

2. The universal differential envelope and k-cycles 

We start with a brief review of the basic concepts of Connes non-commutative geom- 
etry needed to describe Yang-Mills theories with spontaneous symmetry breaking. This 
will allow us to fix the notation and to introduce some useful definitions. For a more 
comprehensive presentation of this subject we refer to [ 1,11,13]. 

Let .4 be an associative unital algebra. We can construct a bigger algebra /2.4 by 
associating to each element A c .4 another symbolic element denoted by 8A. 12,4 is 
the free algebra generated by the symbols A, ~A, A E `4 modulo relations establishing 
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linearity and 

fi( A B )  = 6A B + A6B . (2.1) 

With the definitions 

6 ( A o 6 A 1 . . . 6 A k )  := 6 A o 6 A 1 . . . 6 A k ,  61 := 0 ,  

/2At becomes a N-graded differential algebra with the differential 6 of  degree + 1, 62 = 0. 

/2At is called the universal differential envelope of  At. 
The next element in this formalism is a k-cycle (7-/, D)  over .,4, where 7-( is a Hilbert 

space such that there is an (unit preserving) algebra homomorphism 

r r :  A ---+ B(7-/) . 

B(7-/) denotes the algebra of  bounded operators acting on 7-/. D is a Dirac operator 
such that [D,  r r (A) ]  is bounded for all A E ,,4. We can use this operator to extend rr 

to an algebra homomorphism of  O.'4 by defining 

7r(Ao6AI . . . 6 A ~ )  := 7r(A0) [D ,Tr (AI ) ]  . . .  [D,  Tr(Ak)] . 

However, in general 7r(OAt) fails to be a differential algebra. In order to repair this, 

one has to divide out the two sided N-graded differential ideal f f  given by 

f f  := ~ ) , ] - k  , ,7-k := kerkTr+  6kerk-I  7r,  kerk 7r := kerTr N/2~At. (2.2) 

Now we are ready to define the basic object of  interest , /20 as 

no := G a At / = • ,r( a At ) / (23) 
kEN kEN 

12o is an N-graded differential algebra, where the differential d is defined by 

d [ r r ( w ) ]  := [ r r (6w) ]  , w E 0. '4.  

As an example, let .'4 be the algebra of  smooth functions on a compact spin-manifold, 

7-( the space of  square-integrable spin-sections and D = i~ then /20 is the usual de 

Rham-algebra [ 1 ]. 
So far we have only repeated the definition of  /2o, but in this paper we shall be 

interested in a special kind of  algebras, namely those which are built as tensor products 
of  two algebras. Therefore we recall the notion of product k-cycles [ 1 ]. In this context 
the following summary will often be referred to as the setting we are interested in. 

Setting: Suppose we have two k-cycles, (7-/1,D1) over At1 , (7-/2,D2) over ,42 and 
suppose there is a Z2-grading automorphism X given on 7-(1 such that Dl is odd with 
respect to this grading. This means that there is an element X E/3(7-(1) with 

X 2= I ,  [ A , x ] = O ,  { [ D I , A ] , x } = O ,  for all A E Atl. 
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The product k-cycle (7-(, D) over .4 = .41 ® .42 is then given by 

7-/:= 7-/1 @ ~ 2 ,  D : = D I ® I + x ® D 2 .  (2.4) 

The representations of the algebras on the Hilbert spaces 7-/1,7-/2, ~ shall be denoted by 
7rl, ~r2,7r, respectively. 

In Section 6 we will be dealing with a product k-cycle where the first factor is derived 
from a compact even dimensional spin manifold. This means .A1 = }', the algebra of 
smooth functions, X can be chosen as the grading automorphism of the clifford algebra, 
that is 3'5 for a four dimensional manifold. The second factor will be a matrix algebra 
represented on the Hilbert space C n. 

3. Differential forms of associative matrix algebras 

In this section we shall derive some general properties of the differential algebra 
generated by an associative matrix algebra .4. The k-cycle (7-/, D) over .4 is specified 

as  

7"[=C N; D:=[ .A4,  . ]  , A 4 E C  N®N. (3.1) 

Without any loss of generality we may assume that for the algebra homomorphism 

7~" : a'~`4 ------+ C N e N  

we have 

ker ° 7r = {0}. 

Obviously in this case j 1  is given by 

j 1  = ker ~- A/21.4. 

Therefore contributions to the denominator of the second quotient in Eq. (2.3) arise 
only from 7r(3"k) with k > 2. 

For quite general cases the next lemma shows that 3" is generated by 3 "2 and as a 
consequence the differential on /2o is given by a supercommutator with the matrix .A4 
that determines the Dirac operator. 

Lemma 1. Let `4 be an associative algebra, (7-[,D) a K-cycle over .4 as in (3.1) and 
~r the corresponding algebra homomorphism with ker 0 ~r = {0}. I f  

[.A//2,Tr(.4) ] C rr(3" 2) , (3.2) 

then 
i) ~ ' ( J )  is generated by 7r( j2) ,  i.e. 

~ ( j k )  = ~ E , % 2 ' ~ ( a ' ~ 4 J  2 n~- ' -2 .4) ,  k >_ 2 ,  
0 ,  k = 0, 1 ; (3.3) [ 
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ii) the dif ferential  d on 12o.4 is given by the supercommuta tor  

l = I t ]  = - 

with [7"r(wk) ] E /2ko.4 and w k E S2k.4 . 

P r o o f  Let us consider al [.A4, a2] • .. [.A4, ak] = 0 ,  a i  E "a ' ( .4) ,  i.e. o~ k := a lSa2 .  • • 8ak 

E kert ~. Then we have 

7r(&o k) = [ M ,  a l ]  . . .  [ M ,  ak] = - a i m  [ M ,  a2] " .  [ M ,  ak] 

= - - a l  [ M  2,a2] " . .  [.A4,ak] + a l [ M , a 2 ] M . . .  [ M , a k ]  

k 

= - Z (  - 1  )Jal [ .M, a2] ' ' '  [ .A4 2, aj] . . .  [./vl, at]  
j=2 

+ ( - 1 ) ~ a l  [.A4, a2] . "  [ A 4 , a k ] A 4  . 

The last term in the last equation vanishes by assumption and the sum is of  the form as 
in Eq. (3.3) which proves i). 

To prove the second part of  the lemma we choose any co k := ao[A4 ,  al ] • . .  [ .M, ak] ff 

,Ok`4. Then 

d[Tr(tok)] ---- [Tr(Stok)] -- [ .M,a0]  [ M , a l ] . . .  [ .M,ak]  . 

On the other hand we get 

M T r (  w k) = M a o [  M ,  al ] . . .  [ M ,  ak ] 

= [ .M,a0]  [ M , a l ]  . . .  [ M , a k ]  + a o M [ M , a l ]  . . .  [ M , a k ]  

= [ .M,a0]  [ .A4,al]  . . - [ . A d , a t ]  
k 

- ~ - - ~ ( - 1 ) J a l [ A 4 ,  a2] . . .  [A42, aj]  . . .  [ M , a t ]  
j=l 

+ ( - - 1 ) k a l [ A 4 , a 2 ]  . . .  [ A 4 , a k ] A 4  . 

Use of  condition (3.2) then results in the desired identity. [] 

Our next task is to find algebras for which the condition (3.2) is fulfilled. The next 
lemma shows that the matrix algebras which are building blocks in models discussed 
in [2] for the two point case meet condition (3.2). They are direct sums of algebras 
..4 = .41 @ .42 such that the algebra homomorphism maps them into a block diagonal 

matrix of  the form 

rr( .4)  = ( 7rl ( ` 4 ' )  ) 
~'2 (A2) ' 
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where ¢rj, j = 1,2 denotes the restriction of  7r to Aj. The Dirac operator for those 

algebras is off-diagonal, which will be made more precise in the following lemma. 

Lemma 2. Let  A := ¢41 ~3A2 be the direct sum of associative algebras .Ai, i = 1 ,2  with 
respective units li. Furthermore let (7-[, D) be a K-cycle over A as in (3.1). If 

then 

PiA4Pi = 0 ,  Pi :=7r ( l i )  , i =  1 ,2 ,  (3.4) 

[M2,~r(A)] c ~r(J 2) . 

Proof For a given A ff ¢4 let Ai := liAli. Since 

('01 :-~ E Ait~li -- lit~Ai E ker ] zr 
i=1,2 

we get 8to ] C if2. On the other band condition (3.4) implies P].A42P2 = P 2 . A 4 2 p I  = 0 ,  

hence 

7r(Sw t ) = E [ . A 4 , T r ( A i )  ] [A4,Pi] - [.A/l,Pi] [Ad,Tr(Ai) ] 
i=1,2 

= E [ . A / / 2 ,  Tr(Ai)] = [.A42,,ff(A)] , 
i=1,2 

which completes the proof. []  

4. Example: matrix-algebra 

We now want to apply these results to a matrix algebra which is given as the direct 

sum of  the algebras .Al = Cnxn and .A2 = Cmxm of  complex n x n resp. m x m matrices. 
The representation of  the algebra and the Dirac operator take the form 

r ( A )  = I 0 , M =  
A2 0 ' 

where /z  denotes an arbitrary (non-zero) complex n x m matrix. This particular setting 
serves as an example for what is usually referred to as the ' two point '  case. Let us first 
consider the algebra generated by 

A1 [/z*/z, A 1 ] A I  • (4.1) 

There are two possibilities. Either/z*/z ,-~ lm×m, then the commutator in (4.1) is zero 
and no non-trivial algebra can be generated, o r /z* /z  ,o lm×,,, then the whole algebra 

A~ is generated. There is the same situation for 

.4.2 [/z/z*, .42 ] .,42 
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and therefore we may distinguish three cases: 

i. It*l t ,~ lmxm and IXIX* ~ lnxn, which is possible only for m = n, i.e. ,41 = ..42. In 
this case we have ,.7 = {0} and 

/22DnA= (AI 0 ) , ~Dn+l-4= ( 0 -41 ) 
0 ,,41 -41 0 , n E N .  (4.2) 

The multiplication is just the ordinary matrix multiplication of  2m x 2m matrices. 

ii. Ix*it ~ lm×m and IXIX* ~ 1,×,.  Here only /2~-4 survives since 

1r(O2A) = ~r(A) = jz 

and therefore 

7r(Ok.A) = f f k ,  k _ > 2 .  

In this case one may view 

alD A = {A E C TM} • {B E C nxm} 

as a module over -4. There is no non-trivial multiplication of  elements in/2~-4,  i.e. 

for u, w E /2~A we have l, • o~ = 0. 

iii. m <_ n, I t * i t  ~ lm×m and Itit* ~ ln×n. Again we have 

/2b-4 = {a  C C rex''} @ {B C C nxm} 

as a module over ,,4. However, in this case /22-4 is non-trivial since 

,:(o o) 
0 . 4 2  => ~(/2kA) = f f k '  k > 3 ,  

and therefore 

and all higher degrees o f / 2 o . 4  are trivial. The multiplication of  elements (A, B) ,  
(A t, B ~) 6/21o.4 is given by 

(A O) ( A ' ; , ) = ( A o B ' ~ )  EO2D-4, 

where • denotes the usual matrix multiplication. A representation for the matrix 

algebra is now given by 

0) 
.42 0 ' 0 " 

The relations for the formal elements ~7, ~ '  are 

~71 4: 0 ,  ~71~7=0. 



156 W. Kalau et aL/Journal of  Geometry and Physics 16 (1995) 149-167 

Although these relations seem a little awkward it is not difficult to find a represen- 
tation for them. E.g., 

7 =  0 0 

is such a representation. 

5. Y2o of the tensor product of algebras 

In this section we are going to establish a relation allowing the computation o f /2o  

for a tensor product of two algebras .Al and .A2 as it appears in the setting stated at the 

end of Section 2. 
First note that the division recipe used in the definition (2.3) of ~ o  may be applied 

to any pair (0),7r) formed out of a graded differential algebra 0) which is generated 
by its first two gradings and an algebraic homomorphism zr. Given two such pairs, 

(0)1, Irl ) and (0)2, zr2), the resulting quotient differential algebras may be identical, a 
simple sufficient criterion for that to happen is provided by the following lemma. 

L e m m a  3. Let (0)l,t~l) and (0)2,62) be two graded differential algebras which are 
both generated by the same algebra .A as zeroth grading and their respective differen- 
tials. For an algebra 13 and algebra homomorphisms 

71"1 : 0)1 - '+13, 71"2 : 0)2 "'} 13 

denote by ff~,, the differential ideals defined as in (2.2) and let 12 m = ~)keN ~i(  0)ki ) / 
~ri ( J~,) be the induced differential algebras. I f  

~1 (a)  = ~'2(a) and ~'1 (a la )  = ~r2(62a) for all a E A 

then 

Proof. As 0)1 and 0) 2 are generated by elements aot~ia I • • • 8iak for i = 1,2, we obviously 
have 

7"/'1 (0 )1 )  = 7r2 (0)2)  

since the mappings ¢ri are algebra homomorphisms. Therefore the relation a081 al •. • 61 ak 
C ker k 70 implies ao62al .--62ak E ker k ¢r2 and we get 

"7?1 ( Jz r l )  = ,t-t-2(JTr2). 

This establishes the identity of subalgebras of B. [] 

To apply this lemma to the setting stated at the end of Section 2 consider the skew 
tensor product/2.Al ~ 4 2  of the differential envelopes associated with the algebras .Al 
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and .A2. It is the graded differential algebra defined as the tensored vector space together 
with a graded multiplication 

and a differential 

Providing the algebraic homomorphism 

qr~ : g2Al ~ g2A2 ~-~ B(7-(l ® 7-/2) 

,,[ 6 ( ,4)x j ® 

allows the use of the last lemma with respect to the triples 

(/2(.A1 ®.A2),6, Tr) , (/2Al ~/Z,42,a~,Tr~) , 

resulting in the identity 

~o(A, ®A2) = ¢r~((~A~ ~aA2) ~) (5.1) 
7r~ ( ~  ker k- 1 qr + ker k 7r) ' 

To proceed further we introduce a splitting ¢r~ = 7rz o 7r e by means of the algebraic 
homomorphisms 

77"(~ : ---~ 

t---) 

( ~  ¢q (O/A1) + ¢r:(~A2) 
i+j=k 

(5.2) 
7r~2 : ~ )  qT"l(H, A1) @Tr2(J'2/,A2) --~ B ( ~ l  Q7~2) 

i+j=k 

i+j=k i+j=k 

The reason for this splitting will become clearer by calculating the quotient 

7r e (( a.A1 ~/ZA2) k) JR = t~  ker k-I qr e + ker k 7r~. 
~2,~. := ¢re(J~) ' 

To break the denominator 7r~ (JR) appearing in the last quotient in pieces we borrow 

the identity 

ker k "n'~ = (~)  ker i ~'1 ~/2),,42 + ~.A1 (~ ked q'r2 
i+j=k 

from multilinear algebra and obtain the expression 

7 r . ( J ~ )  = ~ ~'/'l(J/1 ) @7"/'2(J"2d, A2) q- 7"/',(J~,A1) @'r/ '2(~2) , 
i+j=k 

which we now insert in the defining quotient of the algebra/2,re: 



158 W. Kalau et al./Journal of Geometry and Physics 16 (1995) 149-167 

~+j=k orl (S-eAI) ~ or2 (O/A2) 

~D/+j=k orl (J~,) ~ or2 (~A2) + orl ( ~/Al ) ~ or2 (o'~) 

orl (~A1) ~ or2(S~A2) 
i+ j=kI~ 17"1 ( j i !  ) ~ 71"2 ( ff~JA2 ) ~- 77"1 ( ~i¢41 ) ~ or2 ( JJ~ ) 

i+j=k 

= Oo.A1 ~ /2DA2.  (5.3) 

Thus we see that the differential algebra related to or~ is just the skew tensor product 

of the quotient differential algebras associated with .A~ and .A~. 

But still we have to take the map orz into account. To do so we have to know how 

the compository nature of the homomorphism or propagates into the division process 

used to derive the quotient algebra/20. 

Proposition 4. Let ( w , d )  be a N-graded differential algebra and let or = fl o a be the 
composition of algebraic homomorphisms into algebras oJl and o~2: 

oJ ~-+ oJ 1 ~ ~o 2. 

Then we have 

Or(C-O k) ~q( j~ka) 
~'~Ir -~ ~ 71.(jk-------- ~ = ~ t~q(j~q) , J~q=da~ker~-l~q+kerk~q,  (5.4) 

kEN kEN 

where the differential algebras/2~, J~r, O~ are defined as in lemma 3 and ~q denotes 
the algebraic homomorphism 

a(°~)  3(a(°~k)) k 
/~q: ~ a ( J ~ ) - - ~  /~(a(Jak)) ' J~=dkerk - l ° t+kerk° t "  

kEN kEN 

Proof. We shall go through the proof in two steps. First the vector space isomorphism 
is established at the level of the kth grading. Then we show that the multiplication and 
differential are respected thus giving an isomorphism of differential algebras. 

Now kerot C keror implies J,~ C J~, hence we get 

o k  -- = ~ q ~ c ~ ( j k ) J  ~q~ot(Jka),] (5.5) 

by definition of flq. Next we show that 

oe( J~ ) /ot( J~ ) = da~ ker k-l He -'1- kerk flq (5.6) 

and therefore we first prove the identity 

ker k flq = a(ker  k or + J~) /o t (J~) .  (5.7) 
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Clearly '_~' in Eq. (5.7) is given. On the other hand an element of ker k flq is represented 
by v E a(to k) with fl(v) E rr( J~). This means fl(u) = f loa( j )  for an element j E J~ 
and u = a(p) for some p E to. Now v = a(p - j )  +a( j )  with ~r(p- j )  = 0. Therefore 
v E a(kerk ~" + jk) .  This gives Eq. (5.7). Eq. (5.6) is derived by: 

. ( a(kerk-j  ~ '+  J ~ - ' ) )  + a(kerkTr + J~) 
d'kerk-l flq-l-kerk flq=d°" \ -~-J~-~i : t~(Jk) 

a ( d  ker k-1 ~)  a(kerk ~ - + dker k-I a)  
- + 

~(s~)  ~(s~)  

a(d ker k-I "rr + ker ~ "rr) a ( J~)  

o~(j~) a ( J~ )  " 

On the other hand 

= ~(to~)/o~(s~) , 

such that Eq. (5.5) now reads 

,.ok = ~q( ~ka) /~q( jkBq) 

This proves the vector space identity. Going through the proof so far it becomes clear 
that the isomorphism i given by Eq. (5.4) is the identity map on representatives in 
7"r(to) followed by different quotient building mechanisms. The quotient in ~ is split 
up into a double quotient. Using the definition of da. on ~ and dRHS given on 

kEN 

by 

dRHS [flq([O~(P) ] a(J,,)) ]3q(Jpq) = [flq(dl2a [ o~(p) ] tr(Ja)) ]flq(J/3q) 

: [ ~ q ( [ a ( d v )  ],,(jo)) ]~q(j,q) 

we have 

i o da.  = dRHS o i .  

The corresponding relation holds for the multiplication defined on representatives in a 
similar fashion: 

[Vl]s. [v2]s,. = [VlV2]j., 

[~q( [OL(~I ) ]ct(Ja)) ]flq(Jl3q) " [~q([~(~2) ] ot(Ja)) ]flq(J#q) 

= [3q( [a(vl v2) L(J~)) ]/~(~B~) ' 

such that 

i ( [v l ]  [v2]) = i ( [ v l ] )  " i ( [v2])  
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By these rules for multiplication and differential we have established an isomorphism 
of  differential algebras. [] 

We now apply the proposition to the situation of  a tensor product of  algebras, that is 

to a product k-cycle given as described in the setting at the end of Section 2. So we 

choose 

( i t ,  d)  = (/2-41 ~ / 2 - 4 2 , 6 ~ )  

and the mappings 

/~ = F/')S , O/ ---- 7"/'~ , 

with 7rz,Tr~ defined by (5.2).  Additional use of  the identity (5.3) then leads to the 
following theorem. 

Theorem 5. 

((/2o-4, ~ ooA2) k ) 
/2D(A1 ®-'42) = ~ "/T~'q (5.8) 

k~N ¢r~ (dke r  k-1 7rz~ + kerk ¢rz~) 

6. ~ o  of function ® matrix algebras 

For many examples of  interest in particle physics the algebra has the form 

-4 = 3 7 ® . A ~  , 

that is -41 = 3 7 is the algebra of  smooth functions on an even dimensional spin manifold 

and .,42 = -4M is a matrix algebra. For this special case the next lemma shows that the 
denominator in (5.8) vanishes. It is not necessary to go as far as the theorem of  the 
last section since it suffices to use: 

akD(A1 ® 'A2)  = 7 r ( J ~ )  / T r ( J ~ ) "  

I f  ~'l : 37 -+ /3(7-/1 ) is a representation of smooth functions on the square-integrable 
spinors as described in [ 1], ~r2 : ..42 --~ Mn(C)  an injective representation of a matrix 
algebra -42 on C n, we can construct a representation of /237 ~ / 2 - 4 ~  on 7-/1 ® C n using 
the derivation 

D = [ D , . I + [ y S Q . A / t ,  . ]  

with the Dirac operator D = iOuy~ and an n × n-matrix .A//. y5 shall denote the grading 
automorphism X supposed to exist at the end of  Section 2. For a four dimensional 
manifold this is ys. In the following -42 and .At are assumed to satisfy condition (3.4).  

Lemma 6. With the above preliminaries 

7"r( Jk)  /Tr( J k ) = { 0 } .  
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Proof During this proof we shall use the following shorthands: 

~,(~-)=~4, ~(m~tM)--o4, ~,(#)=j/~. 
The important property of  .O(0 r )  is for k >_ 2: 

~ = o,~ - ~  c_ ~,,~. 

Thus we have 

(6.1) 

• , + j ~  ~(J~) = ~ Jl +,o5 + o~, 
i+j=k 

= Z w{+w~+ Zw{+J~' (6.2) 
i+j=k--2 i+j=k 

We shall now choose a representative a E 7r(J~) and show that a E ~-(J~) .  a can be 

written as ce = ¢r(Bk) with 

k =  ( ~  k ~ E k e r  k-17r (6.3) 
i+j=k- 1 

and 

ki i i i = f~8lfl ' ' '61f~, ld 2= AjoS2A~ '''62A~ , 

where f are functions and A E .AM. In Eq. (6.3) we have suppressed a further 

summation due to the tensor product in order to simplify notation. Then 

with 

a=~(6k) 

--Z 
i+j=k- 1 

=E 
i+j=k- 1 

+ 

or, (61 k] ) ('ys) j ® "rr2 ( ~ )  + (-1)icrl(k~)('),5) j+' ® ¢r2( 82~ ) 

i i i 5 j dof ;do f l  ""dof~(y  ) ® AJodMA~ ' ' ' d ~ a J  

E ( i i i i j+l d~aJodMa~...dMA~ -1) f~dof~. . .dofi(~) ® 
i+j=k- 1 

(6.4) 

do f =  [D,f]  = T r l ( S l f ) ,  dMA= [.M,Al =Tr2(62A) . 

Since k E ker k- I 7r we also have 

0 = E f~dof~' ' 'dofi i(yS) j • aodyvta~'..djvtAj. (6.5) 
i+j=k-- I 

We shall first deal with the second term of  the r.h.s, of  (6.4). We know from Section 
3 that the differential of  the matrix part can be written as a supercommutator up to 

elements generated by [.M 2, • ] which are in the ideal (6.2). Thus we can rewrite this 

term as 
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I y 5 ® M ' E  i i "  ~] f ; d o A  . .  d t ,  f ~ ( y s )  j ® A o a m a {  . . . d m A  

i+j=k- 1 S 

+ terms in[A4 2, • ] 

and therefore it is contained in zr(J~) .  We now turn to the first term of the r.h.s, of 

(6.4). Using d o f  = [D, f ]  and Eq. (6.5) we obtain 

first term of (6.4) = - E f o D ( D f l ) ' " ( D f ~ ) ( Y S ) J  ® a ° d m a ~ ' ' ' d m a ~ "  
i+j=k- 1 

At least two of the y-matrices appearing in this expression are identical, therefore this 
term is contained in 

i+j=k-2 

and therefore in 7r(J~) according to (6.2). This gives a E 7r(J~).  [] 

The theorem together with lemma 6 results in the following: 
For all algebras .A = b r ® .AM fulfilling the preliminaries of lemma 6, /2D is given 

by (using the conventions (6.1) ) 

+ o,o + .  + o,o 

f 2 k  ( ' ~  ® -A'A4 ) = o.)k--2 + (.O0 _ I _ .+. (.O 10 + -~--¢.O 1 ~9 J2  -'{- • • • -{- ¢01 ® J2  . . .  O.)2k-2 k - 2  A "2 0 ^ 'k " 

(6.6) 

The differential d results from the differentials o n / Z T  and/2o.Am and is given by the 
derivation 

79= [ D , . ] + [ y S Q . M , . ] s  

operating on representatives of/'2D (Yr®.Am), where the supercommutator is taken with 
respect to the total Z2-grading. 

Corollary 7. I-2D( J: ®.AM ) is isomorphic to the skew tensor product of  the de Rham 
algebra ( A( M) ,  dc) and a matrix differential algebra (ix, d/, ). 

Proof. We construct a mapping that serves as a first step for the isomorphism. It is 
straightforward to show that 

q~: $2ko(.T®-Am) -+ ak~o~ ° + a k-l ~o9~ + Ak-2~(to~ + w °) + . . .  
Ak-2 ~( j~  + a~o) + Ak-4 ~ ( j4  + 0~2 + too) + . . .  

[Ak~uo + Ak-2~p2 + . . . ]  H [[A k] ~ u  ° + [A k-2] ~ , 2  + . . . ]  (6.7) 

is a well defined differential algebra isomorphism (here /2o(.T ® -AM) is taken in 
the form of Eq. (6.6) and [A ~ ] refers to the classes A k k- k-2 = tol/w I ). Separating the 
expression (6.7) by the natural N-grading of differential forms one has 
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k 

/-2kD(bt- ®`4A4) ~ Z A i ( M )  ~ / z k - I ,  (6.8) 
i=0 

where 
• j --2 j--4 

/zJ = O)I "q- 0")2 + W2 + " "  ( 6 . 9 )  
j j  j-2 j-4 

2 q'- W2 -~- W2 q- " ' "  

Thus we have established an algebra correspondence of S2D(J:'®`4¢~ ) to a skew tensor 
product of A(M) and a matrix algebra/z, given as quotient algebra obtained from `4¢~, 
the algebra we started with. Concerning the differential structure one obtains 

d ( A & u )  = dcA~U + ( - 1 ) a a ~ d ~ , u  . (6.10) 

The differential d~, on /z is given by the supercommutator with respect to the grading 

o f / z  

d u ( [ u ] )  = [A4,u]s. [] (6.11) 

7. Example: function ® matrix-algebra 

In this section we want to use the general results, developed in the previous section, 
to extend the example provided in Section 4. The algebra .4 is 

.4 = Y'® (.41 ® .42) = Y:" ®`4M,  

where .41, .42 denote C mxm, resp. C nxn matrix algebras. The Dirac operator for f2(.41 ® 

.42) is off-diagonal as in (3.4). Thus $2D(.41 ® .,42) is known and we can distinguish 
three different cases as shown at the end of Section 4. ~2D$" is the de-Rham complex 
[ l ] and the Dirac operator for the product k-cycle is 

D=i~® l +y5 ®.M. 

A general result is 

a°.4 =.4, ab.4= e.42))' 
as one immediately infers from Eq. (6.6). 

We now analyze higher degrees of/2D.4 for the three different cases as in Section 4. 
i. /Z*/Z ~ lmxm and/z/z* ,-~ 1,x,,  i.e..41 = .42. Because of the isomorphism (4.2) we 

have: 

7rl (nk.T ") ® "n'2 (~I+2`4.M) = "rrl ({2kf ") ® "rr2 (d2/`4.M) . 

Inserting this in Eq. (6.6) and using the fact that 

"77"1 ( y , y  "k) = 77"1 (~2k-2 .~ )  , "/7"2(yk.,~ ) -- {0}  

one obtains for k = 2 
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f22,A = qT. 1 (/22ff.--) @ ./T2( f20,4.A4 ) -I- qTl (/21.~ ") @ "77"2(/21AA,,1) 
rrl (0o.*3 ® rr2( ~ A M  ) 

= A 2 ® ,AM + A 1 ®/21,AM 

and for k > 2: 

o k , A =  '/'/'1 (Ok~-) @ "/T2 (J'~0,AM) -~-,'/TI ( /2k - l )  L') a "B'2(/21.AA,[) 
7/'1 ( /2k-2~ ' )  ~ qT 2 (/20A.A 4 ) + 7/- 1 ( / 2 k - 3 T  ) (~ 7-/- 2 (/21¢4A4 ) 

= A t ® AM + A k-1 ®/21AM • 

In the quotient we suppressed further terms which trivially cancel out. A k denotes the 

space of differential forms of degree k. The degree of an element a E /2o,A is the 
sum of the form degree and the degree of the matrix algebra. We see that although 

all degrees k E N of the matrix algebra/2D,A.M are non-trivial, in the algebra/2DA 
only the zeroth and first matrix degrees appear. However, this situation can change 
if we include a 'generation-space', i.e., if we allow for a bigger representation space 

for the algebra ,AM. The homomorphism 

rr2 : AM 

is extended to 

0r~ :AM 

C 2mx2m 

) C 2m×2m @ C gXg , 

where C g is the 'generation-space'. The new homomorphism is given as 

7r~ = ¢r2 ® 1 . 

This by itself would not yield higher matrix degrees in /2o,,4M. In order to get that 
we have to use the larger freedom in the choice of the matrix .M. We now take 

.A4' = ( 0 /z* ® G * )  
/ x ® G  0 " 

Here G denotes an arbitrary cg®g-matrix. The effect of this extension is that we now 
can distinguish between elements ce E rrl (Ok, T'®/2P, AM ) and/3 E 7rl (/2k, Y'®Oq, AM ) 

for p :~ q as long as the powers of G*G resp. GG* are linearly independent for p 
and q. Therefore they cannot be canceled by the denominator of Eq. (6.6). However, 
there is an integer P0 -< g for which the powers of the matrices become linearly 
dependent. In this case any element O~po E 77"(/2k~" ~ f'~PoA.A d ) can be written as a 
linear combination of elements with smaller matrix degree: 

qKpo/2 

OIP° = Z Olp°--2q ' Odpo--2 q E "lT"( f~k.~ ~ f2P°-2q, A A4) . 
q=l 

As a consequence all terms with matrix degree p > P0 in ¢r(/2,,4) are canceled by 
the denominator of  (6.6). 
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These results can be summarized by defining the following representation for 

s2o.A. The matrix part .A~ of the algebra is generated by the zeroth order 

0 A~ 

and the first order 

~ . A I  0 " 

Here we have introduced a formal element r/ which has the property that 

r iP°=0 ;  rl p ~ O,  P < Po 

and it commutes with all other elements of the algebra. Thus .A~ is a graded algebra 

with highest degree P0 - 1 and an induced Z2 grading. The full algebra /~D.A is 
obtained by taking the graded tensor product of .A~ and the de Rham algebra A 

Sgo.A = A + . A ~  . 

The degree of elements in s2o.A is the sum of form degree and matrix degree. The 

derivation on an element a E SgkD.A is given by 

r//z ® G 0 ,c~ , 

where dc denotes the usual exterior derivative and the commutator is the graded 
commutator. 

One now might wonder what has happened to the 'generation' space? In fact, 
it is not needed at the level of the algebra since it was introduced to separate the 

matrix degrees. This task has been taken over by the element 7/, which also has 

the nilpotency property rl p° = 0. However, the 'generation'-matrix M may have a 
physical interpretation as a mass-matrix for fermions and one might wish to keep 

it in the algebra. This is of course possible and does not change any algebraic 

properties. 

iL /Z*# ~ lmxm and/Z/Z* ,~ lnx~. In this case / / I .AM is the highest matrix degree in 
D o F @  g2D.AM and therefore no further cancellations appear in Eq. (6.6), i.e., 

ker~:q = {0} . 

Thus we infer that 

~(2 D,A = 'f~D ~ (~ "C2D'A.A/I =- A @ ~(2 D.A M . 

Note that the introduction of a 'generation'-space would not change the situation. 
i i i .  m < n, /Z*/Z ~ lmxm and /z/z* , ,o lnxn. In this case the highest matrix degree is 2 

but 
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Therefore the highest matrix degree in /2D.4 is 1 and we can represent this algebra 
in the same way as in ii.. The extension by a 'generation'-space as in i. can be used 
to make 7r(/2~J:" ®/22.4za ) and 7r2 (/2~.T" ® O°.4M ) distinguishable. In this case we 

again have 

ker 7rz~ = {0} 

and therefore 

12o.4 = / 2 o . ' F + / 2 0 . 4 ~  = A ~ / 2 o . 4 ~  . 

8. Conclusions 

We derived a general formula which relates the differential algebra/20 (.41 ®.42) of a 
product algebra to the differential algebras /2D.41 and/20.42 of the factor algebras. This 
considerably simplifies the calculation of Oo(.41 @ .42) once the differential algebras 
of the factor algebras are known. 

However, in the context of Yang-Mills theories with spontaneous symmetry breaking, 

all relevant algebras (for Connes' model building scheme) are of the form .4 = 5 r ® . 4 ~  

with .T', the algebra of smooth functions on space-time and .4M, a matrix-algebra. In 
this case the differential algebras of each factor algebra are known. For the algebra of 

functions it is the usual de Rham-algebra [ 1 ] and the differential algebras for matrix- 
algebras are described in Section 3. With this information it is possible to compute the 
full differential algebra /2o(.7:" ® . 4 ~ )  as we showed for the two-point case in some 
detail. 

Since physical models, at least the bosonic part, are constructed out of objects in 

/20.4, which is an .4-module, the explicit knowledge of the differential algebra for a 

given algebra .4 allows for a very economical derivation of physical quantities like 
connection and curvature. This can be done in the usual way by taking an antihermitian 

one form as connection form and the curvature as the square of the connection. However, 
the construction of physically relevant models requires a more careful discussion, e.g., 

the imbedding of charge and iso-spin enforces a certain structure on the Higgs-sector. 
We shall come back to this point in a future publication. 

It is now also possible to use the explicit knowledge of S2D.4 to discuss the precise 
relation of Connes' approach to Yang-Mills theory with spontaneous symmetry breaking 
and the model presented in [5-7] .  This latter model is based on superconnection h la 
Matthai, Quillen [ 12]. Here, the usual exterior differential is extended by a matrix dif- 
ferential, connections are elements of odd degree in a graded SU(nJm) algebra extended 
to a module over differential forms. There are several features in this approach similar to 
the differential algebras derived in Section 6, namely the general settings in matrix val- 
ued differential forms, the matrix derivation and Cartan's derivation giving the building 
principles for connection and curvature. However, we also note an important difference: 
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the quot ien t  bu i ld ing  descr ibed in Sect ion 6 does not  occur  there and therefore the mode l  

is not  based on a different ial  algebra,  but on an algebra wi th  derivation.  

So far, we  have only  discussed the bosonic  sector o f  physical  models .  For  the deriva- 

t ion o f / 2 0 , , 4  one  has to in t roduce  a Dirac  operator  in order  to represent  the differential  

envelope.  It is cons idered as a nice property o f  Connes '  approach, that this Dirac oper-  

ator can be used to wri te  down the fermionic  Lagrangian.  However ,  i f  one starts with 

S2D,A for the const ruct ion  o f  physical  models ,  then there is no Dirac operator  given 

automatical ly.  O f  course,  such a Dirac operator  can be derived by requir ing the usual 

physical  propert ies.  
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